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Parallel Matrix-Vector Multiplication

• Vectors partitioned identically
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Objective

• Ideally we minimize total run-time

•Settle for easier objective
– Work balanced

– Minimize total communication volume

•Can partition matrices in different ways
– 1-D

– 2-D

•Can model communication in different ways
– Graph

– Bipartite graph

– Hypergraph
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Parallel Matrix-Vector Multiplication
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Parallel Matrix-Vector Multiplication Stage 1

•       sent to remote processes that have

nonzeros in column

“fan-out”
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Parallel Matrix-Vector Multiplication Stage 2

• Local partial inner-products
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Parallel Matrix-Vector Multiplication Stage 3

• Send partial inner-products to process that

owns corresponding vector element

“fan-in”
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Parallel Matrix-Vector Multiplication Stage 4

• Accumulate partial inner-products to 

obtain complete resulting vector
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1-D Column Partitioning

• Each process assigned nonzeros for

 set of columns
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1-D Column Partitioning

• Only “fan-in” communication stage necessary
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1-D Row Partitioning

• Each process assigned nonzeros for

 set of rows
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1-D Row Partitioning

• Only “fan-out” communication stage necessary
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Graph Model of 1-D Partitioning

• Each row or column represented by

graph vertex
– Weighted by number of nonzeros in row/column
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Graph Model of 1-D Partitioning

• Nonzeros represented by edges between

2 vertices (corresponding to nonzero row, col)
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Graph Model of 1-D Partitioning

• Partition into k equal sets

– Such that number of cut edges is minimized
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Graph Model Shortcomings

• Inaccurate approximation of communication volume
• Approximate volume: 6

• Actual volume: 4
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Graph Model Shortcomings

• Requires symmetric nonzero pattern

• NP-hard to solve optimally
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Hypergraph Model of 1-D (Row) Partitioning

• Nonzero pattern can be unsymmetric

• Rows represented by vertices in hypergraph

– Weighted by number of nonzeros in row
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Hypergraph Model of 1-D (Row) Partitioning

• Columns represented by hyperedges

 in hypergraph
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Hypergraph Model of 1-D (Row) Partitioning

• Partition vertices into k equal sets

• Hyperedge cut = communication volume

– Aykanat and Catalyurek (1996)

• NP-hard to solve optimally

k=2
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Graph Model Revisited

• Bisection: count boundary vertices

• Slightly more complicated for k>2
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When 1-D Partitioning is Inadequate

“Arrowhead” matrix

n=12

nnz=30
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When 1-D Partitioning is Inadequate

• For nxn matrix for any 1-D bisection:
– nnz = 3n-2

– Volume  3/4*n

n=12

nnz=30

volume = 9
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2-D Partitioning Methods

• More flexibility

• Yield lower communication volume for many

problems
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2-D Partitioning Methods: Cartesian

• Different variations

• Two-stage partitioning of rows and columns

with 1D hypergraph partitioning
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2-D Partitioning Methods: Cartesian

• Block version shown for clarity

• Stage 1: partition rows

k=4
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2-D Partitioning Methods: Cartesian

• Stage 2: partition columns

• Load imbalance

k=4
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2-D Partitioning Methods: Mondriaan

• Piet Mondria(a)n

–Dutch painter (1872-1944)

–Colored rectangles

–Black rectilinear lines

• 2D Mondriaan Method

–Bisseling, Vastenhouw

–Irregular rectangle

partitions
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2-D Partitioning Methods: Mondriaan

• Recursive bisection hypergraph partitioning

• Each level: 1D row or column partitioning
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2-D Partitioning Methods: Mondriaan

• Block version shown for clarity

• Level 1-- entire matrix

• Row partitioning (cut: 4 vs. 5)

k=4
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2-D Partitioning Methods: Mondriaan

• Level 2 -- upper partition

• Column partitioning

k=4
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2-D Partitioning Methods: Mondriaan

• Level 2 -- lower partition

• Row partitioning (balance)

k=4
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2-D Partitioning Methods: Mondriaan

• Mondriaan

– Fairly fast

– Generally yields good partitions

– Does not suffer from poor load-balancing

k=4
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2-D Method: Fine-Grain Hypergraph Model

• Catalyurek and Aykanat
(2001)

• Assign each nz separately

• Nonzeros represented by
vertices in hypergraph
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2-D Method: Fine-Grain Hypergraph Model

• Rows represented by
hyperedges
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2-D Method: Fine-Grain Hypergraph Model

• Columns represented by
hyperedges
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2-D Method: Fine-Grain Hypergraph Model

• 2n hyperedges
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2-D Method: Fine-Grain Hypergraph Model

k=2, volume = 3

• Partition vertices into k

equal sets

• Volume = hypergraph cut

• Minimum volume

partitioning when optimally

solved

• Larger NP-hard problem
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2-D Method: Fine-Grain Hypergraph Model

Volume = 2

• Loosening load-balancing
restriction we can obtain
minimum cut (for non-
trivial partitioning)
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New 2-D Method: “Corner” Partitioning

• Optimal partitioning of arrowhead matrix
suggests new partitioning method
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New 2-D Method: “Corner” Partitioning

• 1-D partitions reflected across diagonal
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New 2-D Method: “Corner” Partitioning

• Take lower triangular part of matrix
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New 2-D Method: “Corner” Partitioning

• 1-D (column) hypergraph partitioning of

lower triangular matrix
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New 2-D Method: “Corner” Partitioning

• Reflect partitioning symmetrically

across diagonal
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New 2-D Method: “Corner” Partitioning

• Optimal (non-trivial) partitioning

Volume = 2
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Comparison of Methods -- Arrowhead Matrix

*optimal

2(k-1)Order n

• n = 40,000

• nnz = 119,998



47

Comparison of Methods -- “Real” Matrices

finan512 bcsstk30

Portfolio

optimization

Structural

Engineering
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Comparison of Methods -- finan512 Matrix

1-D Column
2-D Mondriaan
2-D Corner
2-D Fine-grain
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Comparison of Methods -- bcsstk30 Matrix

1-D Column

2-D Mondriaan

2-D Corner

2-D Fine-grain
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Number of processes
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10000

5000

15000

20000

25000

30000

35000
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Summary

•Many models for reducing communication in

matrix-vector multiplication

•1-D partitioning inadequate for many

partitioning problems

•New method of 2-D matrix partitioning

– Improvement for some matrices

–Faster than fine-grain method
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Future Work

•Better intuition for “corner” partitioning method

–Optimal for arrowhead matrix

–Good for finan512, bcsstk30 matrices

–When effective?

•Reordering of matrix rows/columns for

“corner” partitioning method

–Unlike 1-D graph/hypergraph, dependence

on ordering

–Find optimal ordering/partition

–Extend utility of method
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